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ABSTRACT 

The purpose of this paper is to present exten- 
sions of results announced by A. Ben-Israel concern- 
ing an iterative method for computing the generalized 
inverse of an arbitrary complex matrix. Ben-Israel 
announced his results without proof; at about the 
same time, the authors of this paper independently 
derived very similar results with more relaxed hy- 
potheses. These similar results a r e  presented with 
proof, together with comments pertaining to the 
Ben- Israel theorem. 
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AN ITERATIVE METHOD FOR COMPUTING THE 

GENERALIZED INVERSE OF A MATRIX 

By H. P. Decell, Jr., and S. W. Kahng* 
Manned Spacecraft Center 

SUMMARY 

This paper presents extensions of results announced by A. Ben-Israel 
(ref. 1) concerning an iterative method for computing the generalized inverse 
of an arbitrary complex matrix. Ben-Israel announced his results without 
proof; at about the same time, the authors of this paper independently derived 
very similar results with more relaxed hypotheses. These similar results 
a r e  presented with proof, together with comments pertaining to the Ben-Israel 
theor em. 

INTRODUCTION 

A. Bjerhammar (ref. 2),  E. H. Moore (ref. 3 ) ,  and R. Penrose 
(ref. 4) independently generalized the concept of matrix inversion to  include 
arbitrary complex matrices. The generalized inverse of a singular or non- 
square matrix possesses properties that make it a central concept in matrix 
theory as well as a very useful applied tool in statistical estimation, curve 
fitting, controllability of linear dynamical systems, stability theory, and so 
forth (refs. 5 through 14 and 16, 17, and 19). 

One of the equivalent definitions of the generalized inverse of an arbi- 
trary complex matrix is an immediate c o n s e qu e n c e of t h e o r e m I 
due to R. Penrose (ref. 4 ) stated here without proof. 
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Theorem I (Penrose) 

The four matrix equations 

A X A = A  

X A X = X  

(XA)* = XA 

(Ax)* = Ax 

have a unique solution X, for each complex matrix A. 

The unique solution X in theorem I is denoted X = A' and is called 
the generalized inverse of A. In addition, it follows immediately from this 

definition that if A is square and nonsingular, then A+ is the usual inverse 

of A (that is, in classical notation, A' = A-l). 

SYMBOLS 

A 

A* 

A- 

A+ 

B 

b. .  
4 

k, n 

2 

a complex matrix 

matrix conjugate transpose of A 

matrix inverse of nonsingular A 

generalized inverse of A 

a complex matrix 

elements of the matrix B 

positive integers 



R(WL 

tr A 

X 

X n 

orthogonal projection on range space of B 

range space of B 

orthogonal complement of R(B) 

trace of the matrix A 

unknown matrix 

matrix iterate 

zero matrix or vector as indicated by context 

eigenvalues 

vectors 

eigenvector 

matrix norm 

SOME BASIC CONSIDERATIONS 

In an effort to make this paper self-contained it is necessary to state 
some basic lemmas concerning generalized matrix inversion and fundamental 
matrix theory. Some lemmas will be stated without proof, but with ample 
reference. 

Lemma I 

The generalized inverse A+ of A (as defined by theorem I) is the 
unique solution of the two matrix equations 



= P  
R(X) R(A*) 

XA=P 

where R(A), R(X), and R(A*) , respectively, denote the range space of A, * 
P and P respectively , denote 

R (A*) ' R(A)' R(X)' X, and A , and where P 

* 
the orthogonal projection operators on R(A), R(X), and R(A 1. 

Proof. - From theorem I it follows that AX = AA+ and X A  = A+A a r e  
hermitian idempotent matrices and hence a r e  projection operators on the 
desired range spaces. 

Lemma II 

For the generalized inverse A+ of A (ref. 4 ) 

* * 
A+AA* = A  = A  AA+ 

(A+)+ = A 

* +  
( A  ) = (A+)* 

Definition I 

The norm of a square matrix €3 is a non-negative nu m b e r 
(denoted I I E3 I I ) which satisfies (ref. 15). 

I lcBl 1 = IcI I IBI 1,  for any complex number c 
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Definition 11 

A sequence of square matrices B (n = 0, 1, 2, .  . . .) is said to converge 
in norm I I I I to the matrix B written B U~B) provided that the 

I I sequence of real numbers 
n 

converges to zero. 
( 

I I Bn - 

Following (ref. 15), a number of basic norms are defined, and some 
comparison inequalities are stated. 

Lemma 111 

If B is a k by k square matrix then the following equalities define 
norms satisfying definition I (ref. 15) 

* 
where X1, . . . , \ a r e  the eigenvalues of B B (see lemma V). 
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Lemma IV 

The norms in lemma 111 satisfy the following inequality (ref. 15) 

Lemma V 

* * 
For any matrix A, the eigenvalues of AA and A A a r e  real, identi- 

cal, and non-negative. 

ITERATIVE COMPUTATION OF A+ 

Ben-Israel initially published the following theorem (ref. 18) in an 

attempt to give a useful iterative scheme for computing A+. This theorem 

used the equivalent definition of A+ given in lemma I. 

Theorem I1 (Ben-Israel) 

The sequence of matrices defined by 

converges in any I I I I -norm defined by lemma 111 to the generalized inverse 
of A, provided 

* 
X = A  B , for some nonsingular Bo 0 0 
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* 
0 X = COA , for some nonsingular C 0 

I lpR(A*)- *oAI I <  

Note here that the term "the sequence Xn converges in I I I I -norm to - 
the generalized inverse of A" means that since Xn may be a rectangular 

matrix for which a norm, in our sense, is not defined) 
( 

Theorem 11 requires a good deal of hypotheses. In p a r t i c u l a r  , it 
requires a priori knowledge of the projections P R(A) and ' R(A*) '  How- 

ever, as Ben-Israel notes, a few more direct computations will produce the 
generalized inverse without iteration in this particular case. 

During preparation for the publication of these results, Ben-Israel an- 
nounced without proof very similar results (ref. 1). In fact, the statement of 
the main result in theorem III will closely parallel the s t a t  e m  e n t of the 
Ben-Israel results announced in reference 1. A c o r  o 11 a r y will follow 
theorem III in order to point out results apparently unnoticed by Ben-Israel. 
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Theorem 111 

Let A be a q by p matrix (nonzero), Am be the largest eigenvalue 

. The sequence defined by 
* * 

of AA , and Xo = QA , where 0 < Q < l / A  m 

converges in any 
of A. 

I I I I -norm defined in lemma 111 to the generalized inverse 

Again, note that this convergence is that convergence defined by equa- 
tions (24) and (25). 

Proof.- The following facts will be established in order to prove the * 
desired results for Xo = QA satisfying the hypothesis 

I I P  ( *)-XoAI I < 1  
R A  

The indicated norm in equations (28) and (29) will be the square root of the 

largest eigenvalue of B B defined in lemma III. Once these facts a r e  estab- 
lished the proof will be complete since equations (26) through (29), together 

* 
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with equation (13) of definition I and lemma IV, imply the convergence (in any 
n - Ax and P R(A) n norm of lemma m) of I? 

In order to establish equation (26) note, from the recursive computation 
of Xn, that there exist matrices Fn7 (n = 0, 1, 2, . . .) such that 

* 
Xn = FnA 

so that, using equations (l), (5), (7), and (30), 

* * 
= AF A AA+ = A F ~ A  = mn n A x P  

n R ( 4  

and 

P Ax = A A + A x  = A x n  R(A) n n 

From equations (31) and (32), observe that 

n> 
- A x  2 1 - A x  ( - 

- ’R(A) n 

n+l - A x  
R(A) 

= P  

A dual argument will establish equation (27). 

I 
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In order to establish equation (28), first note that if X is an eigenvalue i * 
of AA* then 1 - ah 

importance in the examination of the eigenvalues of AA+ - crAA leading to 
the proof of equation (28). However, it will first be necessary to prove that 

the nonzero eigenvalues of AA+ - aAA a r e  of the form 1 - crXi where Xi 

is a nonzero eigenvalue of AA . To this end, let E # 8 be an eigenvector of 

AA+-- QAA 

written as the sum 5 = 1-1 + 17, where pR(A) and T,ER(A) 
it follows that 

is an eigenvalue of I - crAA . This fact will be of i * 

* 
* 

* 
with the associated eigenvalue h . The vector 4 # 8 can be E 

(ref. 5) and hence 

(AA+ - (rAA*) (P + 17) = X5 (P + 17) 

(AA+-(rAA*AA+)(p+v)= (AA+- aAA*)(P+17) 

so that by lemma I 

* 
p - CrAA p = A  p + A  17 5 E 

(33) 

(34) 

(35) 

Multiplying both sides of equation (35) by AA+ (and using eqs. (1) and (5)) it 
follows that 

* 
p - aAA p = A  p 5 

(I - ffAAJp= h 5 p 

(36) 

(37) 
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Now if p # 8 ,  then equation (37) implies that X is also an eigenvalue 4 
of (I  - aAA*) . In this case, as mentioned previously, X must be of the 5 
form 

A = l - a h  5 i 

* 
for some eigenvalue X of AA . Moreover, for the case p # 8 ,  it will be 

shown that the A.  in equation (38) are different from zero. To this end, note 

that if A .  = 0 and p # 8 then X = 1 so that equation (36) implies 

i 

1 

1 4 

* 
U p = $  (39) 

* 
Multiplying both sides of equation (39) by A+ A+ it follows that 

This is impossible since p # 8 and peR(A). Indeed, AA+ is the orthogonal 
projection on the range of A so that 

contrary to equation (40). 

Considering the case p = 8 ,  it follows from equation (35) that X = 0 .  4 * + Hence, the nonzero eigenvalues of AA - crAA 

where Xi is a nonzero eigenvalue of’ AA . Moreover, all of the eigenvalues 

are of the form 1 - ahi 
. *  
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* 
AA are non-negative so that for 0 < cr < 1 A where (A # 0 is the / m  m 

largest eigenvalue of AA*) 

1 - a h . <  1 
1 

Since, as mentioned at the outset of the proof, 

- aAA*t 1 = 1 IAA+ - aAA*I I is the square root of the largest I I’R(A) 
eigenvalue of 

*Y (43) (AA+ - aAA*) (AA+ - aAA*) = (AA+ - aAA 
* 

2 
it follows that the nonzero eigenvalues of (AA’ - aAA*) are of the form 

(1 - “hi)2 < 1 (44) 

so that 

* 
where the Ai are nonzero eigenvalues of AA . Hence 

I I AA+ -‘aAA*I I < 1 

which is in fact equation (28). 
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* 
A dual argument will establish equation (29) (using the fact that AA 

and A A have the same eigenvalues) and, thus, complete the proof of the 
theor em. 

* 

The following corollary will eliminate the need for c o m p u  t i n g  the * 
eigenvalues of AA in theorem III. 

Corollary I 

In theorem III, the choice of CY may be 1 i m i t  e d  to 0 < CY < 1/p * 
where p is any norm defined in lemma 111 of AA . 

Proof - The eigenvalues of any square matrix B cannot exceed any of 
the norm of B defined in lemma 111 (ref. 15). Hence, if P is any norm 

of AA defined by lemma 111 then 
* 

O < h  s p  m 

so that 

1 1  o < - 4  - 
P -  Am 

It follows that theorem 111 is valid for any choice of CY such that 

o < C Y < p  1 
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CONCLUDING REMARKS 

The algorithm described in theorem I11 always guarantees the knowledge 
of the proper initial guess to force convergence. In addition, corollary I rules 

out the necessity for calculating eigenvalues of the matrix AA 
find a suitable constant a. This item did not appear in reference 1. The 
algorithm in theorem 111 was successfully tested on Hilbert segments through 
order seven. 

* 
in order to 

Manned Spacecraft Center 
National Aeronautics and Space Administration 

Houston, Texas, May 2, 1966 
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